导航:首页 > 显卡算力 > 计算机的算力发展

计算机的算力发展

发布时间:2023-12-23 12:33:33

算力是什么意思

什么是算力

算力的字面意思,大家都懂,就是计算能力(Computing Power)。

更具体来说,算力是通过对信息数据进行处理,实现目标结果输出的计算能力。

大部分时间里,我们会通过口算、心算进行无工具计算。但是,这样的算力有点低。所以,在遇到尺谨复杂情况时,我们会利用算力工具进行深度计算。

❷ 从计算机硬件设计的角度分析如何提供更为丰富的算力

自上世纪90年代互联网技术诞生以来,移动互联网、云计算、大数据、人工智能等新一代信息技术的不断发展和逐步成熟,并日益深入的渗透到经济社会的各个领域,2020年全球范围内爆发的新冠疫情又进一步加速了这一趋势,数字经济已经成为世界经济发展的新阶段,即世界经济发展已经进入数字经济时代。
党中央、国务院和各级政府高度重视数字经济的发展。从2015年《中国制造2025》、《促进大数据发展行动纲要》等政策出台以来,中央和各级地方陆续以推出系列数字经济发展的措施,并支持雄安新区、浙江、福建等六个地区建设国家数字经济创新发展试验区,支持北京、上海、深圳、西安等地建设国家新一代人工智能创新发展试验区。2020年国家进一步提出加强新型基础设施建设,并明确将数据作为一种新型生产要素写入政策文件,这些将为数字经济的发展奠定更加坚实的基础。
农业经济时代,土地、水源和工具是关键资源。工业经济时代,能源、原材料、机器设备和生产工艺等是关键资源。那数字经济时代的关键资源是什么呢?数字经济时代的关键资源是数据、算力和算法。数据是数字经济时代的原材料,各种经济活动中都在源源不断的产生的数据,越来越多的组织也将数据当作一种资产,在政策层面数据已经成为一种新型生产要素。算力相当于数字经济时代的机器设备和生产力,面向各种场景的数据产品或应用都离不开算力的加工和计算,而且对算力的需求和要求也越来越高。算法是数字经济时代的生产工艺,面向图像、语音、自然语言处理等不同的应用场景和领域的算法也层出不穷,算法的提升和改进可以提高算力的效率和更多的挖掘数据价值。
本文重点分析算力方面内容,介绍算力市场总体情况,当前算力发展的特点和趋势,以及重点算力供应方式等。
一、算力需求快速增长,算力投资具有多重经济价值
算力即计算能力,核心是CPU、GPU、NPU、MCU等各类芯片,具体由计算机、服务器、高性能计算集群和各类智能终端等承载。数字经济时代,数据的爆炸式增长,算法的复杂程度不断提高,对算力需求越来越高。算力是数字经济发展的基础设施和核心生产力,对经济发展具有重要作用,根据IDC与浪潮联合发布的《2020全球计算力指数评估报告》,计算力指数平均每提高1点,数字经济和GDP将分别增长3.3‰和1.8‰。
随着数字经济的不断发展,人工智能、物联网、区块链、AR/VR 等数字经济的关键领域对算力的需求也将呈爆炸式增长。根据华为发布的《泛在算力:智能社会的基石》报告,预计到2030年人工智能、物联网、区块链、AR/VR 等总共对算力的需求将达到3.39万EFLOPS,并且将共同对算力形成随时、随地、随需、随形 (Anytime、Anywhere、AnyCapacity、Any Object) 的能力要求,其中人工智能算力将超过1.6万EFLOPS,接近整体算力需求的一半。OpenAI开发的GPT-3模型涉及1750亿个参数,对算力的需求达到3640PFLOPS,目前国内也有研究团队在跟进中文GPT-3模型的研究。
算力投资具有多重经济价值,不仅直接带动服务器行业及上游芯片、电子等行业的发展,而且算力价值的发挥将带动各行业转型升级和效率提升等,带来更大的间接经济价值。根据《泛在算力:智能社会的基石》报告,每投入1美元算力即可以带动芯片、服务器、数据中心、智能终端、高速网络等领域约4.7美元的直接产业产值增长;在传统工厂改造为智能化工厂的场景下,每1美元的算力投入,可以带动10美元的相关产值提升。
二、算力发展的特点及趋势
随着数据规模的增加和算法复杂度的提升,以及应用多样性的不断丰富,对算力提出的要求也越来越高,当前算力发展呈现出三方面的特点,一是多种架构百花齐放的状态,二是中心化的算力与边缘终端算力快速发展,三是专用算力日渐成势。
近年来多种算力架构并存并快速发展。曾经x86架构的算力占绝对优势,英特尔和AMD基本垄断了X86算力架构市场,海光信息通过跟AMD合作获得x86架构的授权;如今基于ARM架构的算力份额不断扩大,特别是在移动端ARM架构算力成为主流,华为海思等主要产品是基于ARM架构,另外天津飞腾的产品也是基于ARM架构。随着人工智能等算力需求的不断增加,GPU算力的需求不断增加,英伟达在GPU算力市场占有绝对优势,AMD也分了一杯羹,叠加比特币挖矿算力需求,导致市场上GPU卡供不应求。近几年国内也出现几个GPU方面的创业团队,如寒武纪、登临科技、燧原科技等。此外,Risc-V、存算一体化架构、类脑架构等算力也不断涌现,不过这些算力刚刚起步,在应用生态等方面还需要一定较长的培育过程。
中心化算力和边缘终端算力快速发展。随着7nm制程日渐成熟,基于7nm制程的CPU、GPU等算力性能得到极大提升,目前7nm制程算力主要是中心化算力,移动端智能手机的处理器算力部分也已经采用7nm制程。台积电的7nm制程已经实现规模化,并开始攻关3nm工艺制程;中芯国际7nm工艺制程仍在技术攻关当中。随着5G及物联网应用的不断增加,边缘终端算力的需求日益增加,特别是自动驾驶、智慧安防、智慧城市等领域算力需求。地平线自动驾驶芯片已经量产,英伟达jetson产品在嵌入式终端产品应用广泛,其他针对特定领域专用边缘终端芯片创业公司层出不穷。
针对图像、语音等特定领域的专用算力日渐成势。一方面是芯片工艺制程越来越逼近摩尔定律的极限,另一方面是物联网智能终端对功耗的要求等,针对特定领域的专用芯片层出不穷,并且越来越多的巨头参与其中。谷歌的TPU专为机器学习定制的算力,阿里平头哥的含光NPU专为神经网络定制的算力,赛灵思的FPGA算力,网络研发针对语音领域的鸿鹄芯片以及云知声、思必驰、探境科技等也推出智能语音相关的芯片,北京君正、云天励飞、依图科技和芯原微电子等推出针对视觉和视频处理相关的专用芯片。
三、算力供应以公有云和自建算力为主,多种方式相补充
当前的算力供给主要包括公有云、超算中心、自建算力、地方算力中心等方式。其中,公有云和自建算力中心是算力的主要来源方式,超算中心及地方算力中心等多种方式相互补充。
规模化的算力供应通常通过数据中来承载,新建数据中心的不断增加,将带动未来算力资源的供应不断扩大。据中国电子信息产业发展研究院统计数据,2019年中国数据中心数量大约为7.4万个,大约能占全球数据中心总量的23%,其中大型数据中心占比12.7%;在用数据中心机架规模达到265.8万架,同比增长28.7%;在建数据中心机架规模约185万架,同比增加约43万架。2020年国家大力支持“新基建”建设以来,数据中心作为“新基建”的重要内容,京津冀、长三角和珠三角等算力需求地区,以及中西部能源资源集中的区域,如内蒙、山西等,均在推进新的大中型数据中心的建设。
公有云以其稳定和易用等特点,成为许多企业特别是中小企业的算力首选方式。据不完全统计,阿里云服务器总数接近200万台,腾讯云服务器总数超过110万台,华为云、网络云、京东云、AWS等云厂商服务器总数未找到确切数据,保守估计各类云厂商服务器总数之和也超过500万台。而且在国家宣布大力支持“新基建”建设之后,腾讯宣布未来五年将投资5000亿元用于云计算、数据中心等新基建项目的进一步布局,阿里云宣布未来三年阿里将投2000亿元用于面向未来的数据中心建设及重大核心技术研发攻坚,网络宣布预计到2030年网络智能云服务器台数将超过500万台。各大云厂商仍在继续加大算力投入,公有云算力供应将会更加充裕。
自建算力以其安全性和自主性等特点,成为政府、大企业及其他关注安全的组织的算力首选方式。政府、银行及高校和央企等,通常通过自建或租赁数据中心的方式自建算力,满足自身各项业务的算力需求。许多互联网公司在刚开始时选择使用公有云服务,但规模发展到一定程度时通常都会开始自建或租赁数据中心的方式自建算力。其他有部分各种类型的企业,出于安全、商业机密和隐私等方面的考虑,不意愿把数据和业务等放到阿里云等公有云上,往往选择托管服务器的方式自建算力,规模更小企业直接就在本地使用。2020年6月快手宣布投资100亿元自建数据中心,计划部署30万台服务器,字节跳动等大型互联网公司都在不断加大数据中心的建设。
超算中心和地方算力中心作为算力供应有效的补充方式,适合于大规模计算需求的应用领域。截至2020年,科技部批准建立的国家超级计算中心共有八所,分别是国家超级计算天津中心、广州中心、深圳中心、长沙中心、济南中心、无锡中心、郑州中心和昆山中心。超算中心主要的算力资源以CPU为主,新建的超算中心及更新升级过程中超算中心逐步增加了异构GPU算力资源。超算中心较好的满足和弥补了高校科研中算力资源的需求,特别是在工业仿真、生物信息、新材料、气象、海洋等科学计算领域。国内主要省市地区基本都投资建设了当地算力中心,重点服务本地科研和产业发展的需求,如太原、苏州、福建等地,目前通常地方算力中心的规模并不大,计算节点数在200-500之间居多,主要服务于当地气象、工业仿真和生物信息等领域计算需求。此外,2020年以来,武汉、南京、珠海、许昌等地区正在建设人工智能计算中心,将在一定程度上弥补当前规模化AI算力不足的情况。
结语
算力作为数字经济的基础设施,也是数字经济时代的生产力和引擎,越来越成为数字经济时代国家竞争力的体现。根据IDC与浪潮联合发布的《2020全球计算力指数评估报告》,中国和美国的算力建设在全球处于领先地位,美国的算力无论在规模、效率、应用水平等方面都领先于中国。此外,从算力芯片供应角度看,美国的英特尔、AMD、英伟达等企业几乎占了全球的绝大部分的市场份额。可见,中国在算力建设和发展仍然需要加大投入和加强研发等,发挥优势的同时弥补不足,从而为数字经济长期发展奠定更加坚实的基础。

❸ 每一个阶段计算机的计算能力

计算机的历史

现代计算机的诞生和发展 现代计算机问世之前,计算机的发展经历了机械式计算机、机电式计算机和萌芽期的电子计算机三个阶段。

早在17世纪,欧洲一批数学家就已开始设计和制造以数字形式进行基本运算的数字计算机。1642年,法国数学家帕斯卡采用与钟表类似的齿轮传动装置,制成了最早的十进制加法器。1678年,德国数学家莱布尼兹制成的计算机,进一步解决了十进制数的乘、除运算。

英国数学家巴贝奇在1822年制作差分机模型时提出一个设想,每次完成一次算术运算将发展为自动完成某个特定的完整运算过程。1884年,巴贝奇设计了一种程序控制的通用分析机。这台分析机虽然已经描绘出有关程序控制方式计算机的雏型,但限于当时的技术条件而未能实现。

巴贝奇的设想提出以后的一百多年期间,电磁学、电工学、电子学不断取得重大进展,在元件、器件方面接连发明了真空二极管和真空三极管;在系统技术方面,相继发明了无线电报、电视和雷达……。所有这些成就为现代计算机的发展准备了技术和物质条件。

与此同时,数学、物理也相应地蓬勃发展。到了20世纪30年代,物理学的各个领域经历着定量化的阶段,描述各种物理过程的数学方程,其中有的用经典的分析方法已根难解决。于是,数值分析受到了重视,研究出各种数值积分,数值微分,以及微分方程数值解法,把计算过程归结为巨量的基本运算,从而奠定了现代计算机的数值算法基础。

社会上对先进计算工具多方面迫切的需要,是促使现代计算机诞生的根本动力。20世纪以后,各个科学领域和技术部门的计算困难堆积如山,已经阻碍了学科的继续发展。特别是第二次世界大战爆发前后,军事科学技术对高速计算工具的需要尤为迫切。在此期间,德国、美国、英国部在进行计算机的开拓工作,几乎同时开始了机电式计算机和电子计算机的研究。

德国的朱赛最先采用电气元件制造计算机。他在1941年制成的全自动继电器计算机Z-3,已具备浮点记数、二进制运算、数字存储地址的指令形式等现代计算机的特征。在美国,1940~1947年期间也相继制成了继电器计算机MARK-1、MARK-2、Model-1、Model-5等。不过,继电器的开关速度大约为百分之一秒,使计算机的运算速度受到很大限制。

电子计算机的开拓过程,经历了从制作部件到整机从专用机到通用机、从“外加式程序”到“存储程序”的演变。1938年,美籍保加利亚学者阿塔纳索夫首先制成了电子计算机的运算部件。1943年,英国外交部通信处制成了“巨人”电子计算机。这是一种专用的密码分析机,在第二次世界大战中得到了应用。

1946年2月美国宾夕法尼亚大学莫尔学院制成的大型电子数字积分计算机(ENIAC),最初也专门用于火炮弹道计算,后经多次改进而成为能进行各种科学计算的通用计算机。这台完全采用电子线路执行算术运算、逻辑运算和信息存储的计算机,运算速度比继电器计算机快1000倍。这就是人们常常提到的世界上第一台电子计算机。但是,这种计算机的程序仍然是外加式的,存储容量也太小,尚未完全具备现代计算机的主要特征。

新的重大突破是由数学家冯·诺伊曼领导的设计小组完成的。1945年3月他们发表了一个全新的存储程序式通用电子计算机方案—电子离散变量自动计算机(EDVAC)。随后于1946年6月,冯·诺伊曼等人提出了更为完善的设计报告《电子计算机装置逻辑结构初探》。同年7~8月间,他们又在莫尔学院为美国和英国二十多个机构的专家讲授了专门课程《电子计算机设计的理论和技术》,推动了存储程序式计算机的设计与制造。

1949年,英国剑桥大学数学实验室率先制成电子离散时序自动计算机(EDSAC);美国则于1950年制成了东部标准自动计算机(SFAC)等。至此,电子计算机发展的萌芽时期遂告结束,开始了现代计算机的发展时期。

在创制数字计算机的同时,还研制了另一类重要的计算工具——模拟计算机。物理学家在总结自然规律时,常用数学方程描述某一过程;相反,解数学方程的过程,也有可能采用物理过程模拟方法,对数发明以后,1620年制成的计算尺,己把乘法、除法化为加法、减法进行计算。麦克斯韦巧妙地把积分(面积)的计算转变为长度的测量,于1855年制成了积分仪。

19世纪数学物理的另一项重大成就——傅里叶分析,对模拟机的发展起到了直接的推动作用。19世纪后期和20世纪前期,相继制成了多种计算傅里叶系数的分析机和解微分方程的微分分析机等。但是当试图推广微分分析机解偏微分方程和用模拟机解决一般科学计算问题时,人们逐渐认识到模拟机在通用性和精确度等方面的局限性,并将主要精力转向了数字计算机。

电子数字计算机问世以后,模拟计算机仍然继续有所发展,并且与数字计算机相结合而产生了混合式计算机。模拟机和混合机已发展成为现代计算机的特殊品种,即用在特定领域的高效信息处理工具或仿真工具。
20世纪中期以来,计算机一直处于高速度发展时期,计算机由仅包含硬件发展到包含硬件、软件和固件三类子系统的计算机系统。计算机系统的性能—价格比,平均每10年提高两个数量级。计算机种类也一再分化,发展成微型计算机、小型计算机、通用计算机(包括巨型、大型和中型计算机),以及各种专用机(如各种控制计算机、模拟—数字混合计算机)等。
计算机器件从电子管到晶体管,再从分立元件到集成电路以至微处理器,促使计算机的发展出现了三次飞跃。
在电子管计算机时期(1946~1959),计算机主要用于科学计算。主存储器是决定计算机技术面貌的主要因素。当时,主存储器有水银延迟线存储器、阴极射线示波管静电存储器、磁鼓和磁心存储器等类型,通常按此对计算机进行分类。

❹ 我国超级计算机的发展现状

行业主要相关上市公司:星网锐捷(002396)、工业富联(601138)、中际旭创(300308)、神州数码(000034)、光环新网(300383)、中国长城(000066)等。

本文核心数据:中国超算服务市场规模、中国超算服务市场结构、细分市场规模

中国超算服务市场总规模接近200亿元

根据弗若斯特沙利文数据,2016-2021年中国超算服务市场规模不断上升,从2016年的65.1亿元增长至2021年的196.6亿元,接近200亿元,复合增速达到24.7%。

2021年业务超算服务市场规模占比最大

目前超算细分行业主要有尖端超算、人工智能超算、通用超算以及业务超算。2021年中国业务超算服务市场规模达到85.6亿元,占比为44%。通用超算和人工智能超算市场规模分别为41.3亿元和38.3亿元,占比分别为21%和19%。目前规模最小的是尖端超算,占比仅为16%,市场规模为31.4亿元。

2021年业务超算服务市场规模超过85亿元

业务超算直接服务于行业内的具体业务,具有较强的实用性,在金融、机械、汽车行业内应用较广。2016-2021年中国业务超算服务市场规模快速提升,2021年已经超过85亿元,较2020年增长32.92%。

2021年中国通用超算服务市场规模超过40亿元

2016-2021年中国通用超算服务市场规模同样呈现不断上升趋势,2021年首次超过40亿元,达到41.3亿元,较2020年增长11.62%。

国家政策环境推动行业持续发展

近年来,为提升中国算力水平,完善数据中心布局,国家发布了一系列的政策,包括实施“东数西算”工程,发布《“十四五”信息通信行业发展规划》等政策。2021年11月工信部印发的《“十四五”信息通信行业发展规划》中提到,到2025年中国数据中心算力将从2020年的每秒9千亿次浮点运算提升至每秒3万亿次浮点运算,提升幅度达到年均27%。中国超级计算服务市场在政策推动下,将焕发出更大的发展活力。

综上所述,2021年中国超算服务市场总规模已经接近200亿元,其中业务超算以及通用超算占比较高。2021年业务超算服务市场规模超过85亿元,通用超算超过40亿元。在国家政策推动下,中国超算服务市场将迎来快速发展。

以上数据参考前瞻产业研究院《中国超算行业市场需求预测与投资战略规划分析报告》。

❺ 算力的定义及应用,介绍算力的神秘面纱

算力是指计算机系统的计算能力,它是指计算机系统在一定时间内能够完成的计算任务的数量。算力可以用来描述计算机系统的性能,也可以用来衡量计算机系统的能力。算力的应用非常广泛,它可以用来解决复杂的科学问题,也可以用来支持大规模的数据处理,还可以用来支持人工智能的发展。

二、算力的神秘面纱

算力是一种神秘的力量,它可以让计算机系统完成令人难以置信的任务。算力的神秘面纱在于它可以让计算机系统完成更多的任务,而且这些任务可以在更短的时间内完成。算力的神秘面纱还在于它可以让计算机系统完成更复杂的任务,键磨而且这些任务可以在更短的时间内完成。

算力的神秘面纱还在于它可以让计算机系统完成更复敬大杂的任务,而且这些任务可以在更短的时间内完成。算力的神秘面纱还在于它可以让计算机系统完成更复杂的亮亮竖任务,而且这些任务可以在更短的时间内完成。

三、算力的发展历程

算力的发展历程可以追溯到20世纪50年代,当时计算机系统的算力只有几十万次/秒,而现在的计算机系统的算力可以达到几千亿次/秒。算力的发展历程可以说是由硬件的发展驱动的,从最初的晶体管到现在的微处理器,算力的发展历程一直在不断提升。

四、算力的应用

算力的应用非常广泛,它可以用来解决复杂的科学问题,也可以用来支持大规模的数据处理,还可以用来支持人工智能的发展。算力可以用来解决复杂的科学问题,比如天文学、物理学、化学、生物学等,它可以帮助科学家们更快地解决问题。算力也可以用来支持大规模的数据处理,比如大数据分析、机器学习等,它可以帮助企业更快地获取有价值的信息。此外,算力还可以用来支持人工智能的发展,比如自动驾驶、语音识别等,它可以帮助人们更好地利用人工智能技术。

五、算力的未来发展

算力的未来发展将会更加迅速,随着硬件技术的发展,计算机系统的算力将会更加强大。此外,算力的未来发展还将受到软件技术的推动,比如分布式计算、云计算等,它们可以帮助计算机系统更好地利用算力。未来,算力将会成为一种普遍存在的力量,它将会改变我们的生活方式,让我们的生活更加便捷、更加高效。

六、结论

算力是一种神秘的力量,它可以让计算机系统完成令人难以置信的任务。算力的应用非常广泛,它可以用来解决复杂的科学问题,也可以用来支持大规模的数据处理,还可以用来支持人工智能的发展。算力的未来发展将会更加迅速,它将会改变我们的生活方式,让我们的生活更加便捷、更加高效。

阅读全文

与计算机的算力发展相关的资料

热点内容
bte矿机多少钱 浏览:176
区块链金融加盟 浏览:793
最新人民日报评比特币 浏览:567
1050挖矿eth 浏览:595
谁有区块链微信群啦几个 浏览:749
货币比特币插针 浏览:994
亚洲博鳌区块链论坛 浏览:494
区块链传销马来西亚 浏览:468
区块链开发相关名词 浏览:261
世联虚拟货币 浏览:131
莱特币挖矿收益计算器比特范6 浏览:353
比特币概念股票龙头股票 浏览:420
手机挖矿需要充钱吗 浏览:854
旺旺区块链基地 浏览:36
蓝鲸矿机官网 浏览:865
在uas数字货币交易平台被骗 浏览:48
数字货币市场价 浏览:627
挖矿怎么开启 浏览:332
区块链骗局何其多 浏览:970
风险预警区块链 浏览:92