导航:首页 > 矿机大全 > 山东矿机大学

山东矿机大学

发布时间:2024-05-07 00:02:33

① 中国挖pi币的十大名人

1、李笑来,“中国比特币首富”,著名天使投资人,2001年~2008年就职新东方教育集团,08年8月创立艾德睿智国际教育咨询有限公司,2011年的一次契机,李笑来从网络上获知关于比特币的消息,自此凭借其卓越的投资大脑,于2013年创立比特基金,专注用互联网、比特币相关领域的天使投资。

2、吴忌寒,中国币圈最有权势的人,他创建了比特币大陆,其产品是比特币挖矿矿机,风靡全球。他拥有三个矿池:BTC.com,ConnectBTC和AntPool,占据全球算力约30%(要知道51%的算力攻击就可以颠覆比特币系统,就像达摩克利斯之剑一样,宝剑高悬,泰山压顶),对于比特币走向拥有不可低估的影响力。 2011年底,吴忌寒干了一件惊天动地的大事,他把中本聪的比特币创世论文《比特币:一种点对点的电子现金系统》翻译成了中文,因此被称为是“比特币的布道者。2018年11月13日,吴忌寒入选《2018胡稿唯润区块链富豪榜》,以165亿元人民币财富排名第2

3、沈波,国内首家专注投资区块链技术相关企业的风险投资机构、以及中国规模最大的区块链投资基金——分布式资本的合伙人,2017年11月份,分布式资本已经在全球投资了近50家区块链初创公司,投资总额达5000万美元。而这家机构的顾问(前合伙人),就是大名鼎鼎的天才创业者以太坊创始人Vitalik Buterin。最初身为Invictus Innovations Incorporated的创始人(比特股的创始团队),背靠万象集团,实力雄厚。此人行事低调,属于区块链投资圈的顶尖人物。2018年11月13日,沈波入选《2018胡润区块链富豪榜》,以70亿元人民币财富排名第5。(与李笑来并列第5)

4、詹克团,比特币大陆联合创始人,毕业于清华大学和中国科学晌敬帆院,被称为比特大陆的“技术大脑”,拥有近15年集成电路行业的管理及营运经验。他在2001年获得山东大学电子信息科学与技术专业学士学位,2004年获得中国科学院微电子研究所微电子与固体电子学专业硕士学位。他曾在6个月时间就开发出比特宴雹币第一代矿机,能效远超同行,打下了比特大陆的业界基础。2018年11月13日,李笑来入选《2018胡润区块链富豪榜》,以295亿元人民币财富排名第1。

② MEMS技术在煤矿瓦斯灾害预测中的应用

李月周瑶琪

(中国石油大学(华东)地球化学与岩石圈动力学开放实验室 山东东营 257061)

作者简介:李月,女,1979年12月生,河北沧州人,2002年毕业于中国石油大学石油地质专业,获学士学位,在读博士研究生,研究方向:地质资源与地质工程,电子信箱:[email protected]

摘要 在利用MEMS技术对花岗岩样的压裂过程进行监测的基础上,应用对破裂的监测原理,探讨了MEMS技术在预测瓦斯爆炸方面的应用。实验中,用压机对岩样进行持续施压,观测到4批微破裂。主破裂发生之前的三批微破裂是岩样内部裂缝逐渐集中并相互贯通的结果,可以看作是地震发生前的前兆。主破裂的发生在宏观上产生裂缝。基于上述原理,把该项技术用于预测由于入为采矿所产生的矿震以及天然地震所造成的矿山爆炸也将产生较好的效果。

关键词 MEMS技术 压裂 微破裂 煤矿灾害

Application of MEMS in Forecast of Gas Disaster of Coalmine

Li Yue,Zhou Yaoqi

(Geochemistry & Lithosphere Dynamic Open Laboratory,China Universityof Petroleum,Dongying 257061)

Abstract:Based on the monitoring to the fracturing process of the granitic sample by MEMS,applying the monitoring principle,we discussed the application of MEMS in forecasting the gas blowing up.In this experiment,continually forcing to the sample,we observed four series of micro-fracture.The anterior three series of microfracture before the main fracture were because of the crack in the sample centralizing and connecting,which was regarded as the portent of the earthquake.The main-fracture proced the crack in macro.Based on the beforementioned principle,it was concluded that the forecast of mine blast resulted from the mining and crude earthquake had the good effect by this technology.

Keywords:MEMS;fracturing;micro-fracture;coal mine disaster

序言

MEMS(Micro-Electro-Mechanical Systems)通常称为微机电系统技术,其含义是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路,包括接口、通信和电源等于一体的微型器件或系统。[1]

矿难在近几年的重大伤亡事故中占据相当大的比重,瓦斯爆炸以及入工诱发地震更是给入们带来了极大的威胁。本文主要是在实验的基础上探讨MEMS技术在预测煤矿灾害中的应用。

1 实验

实验主要是利用MEMS技术敏感的特点,通过对花岗岩破裂过程的监测,观察微破裂发生时传感器的瞬间反应。

1.1 样品和观测系统简介

样品采自山东莱州,属于燕山期花岗岩。加工成50×15×7.5 cm3的实验样品。花岗岩具有均匀的颗粒结构,主要由石英、长石和黑云母以及少量重矿物组成。长石最大斑晶可达5mm左右,一般颗粒粒径为0.5~3mm。黑云母则通常沿石英长石颗粒边缘呈线状分布(见图1)。

图1 花岗岩显微结构(正交偏光×50)

传感器采用东营感微科技开发公司生产的4个ME MS-1221 L 型单分量加速度传感器。其灵敏度为2 V/G,分辨率为10-4G,频带范围0~1000Hz。数据采集和分析系统为东营感微科技开发公司开发的通用数据监测和分析软件RBH-General。

压裂实验使用中国石油大学机电学院矿机实验室WE-300型压机(图2)。观测系统如图2(b)以及图3所示。

图2 实验用压机及观测系统

a为WE-300型实验用压机,b为岩样观测系统传感器放置和受压支撑位置

图3 观测系统平视图

其中编号1、2、3、4为4个传感器,传感器1、4靠近岩石块边缘。4个传感器在一条水平线上。1号传感器与2号传感器中心间隔10cm,3号与4号之间也是同样间隔。传感器的半径为2.5cm

1.2 实验过程与数据讨论

1.2.1 实验过程

首先将岩样平放在压机上,并使得岩样两端距支撑线的距离相等,同时记下两侧距离值,以便清楚岩样受压的力臂;然后将4个传感器依次放在岩样上面(图3),并记下各自的位置,同时将传感器和数据采集分析系统相连,以便对不同部位的微破裂所发出的信号进行记录。

时间记录从0秒开始,数据采样频率为4000Hz。压力的施加过程是循序渐进的,压力从0 kN 开始逐渐增大,观察数据的变化,开始记录的是噪声的频谱,当压力增加到致使岩样内部结构发生变化时,频谱即刻发生变化,频谱的变化过程将在下面进行讨论,其中红色代表传感器1的频谱,黑色代表传感器2的频谱,蓝色代表传感器3的频谱,黄色代表传感器4的频谱。在近360秒的压裂过程中,真正的岩样破裂是在最后一分钟内完成的,即分别在302.290~303.826 s;305.599~307.135 s;316.793~318.329 s和357.923~360.258s,岩样共发生了四批微破裂。除了最后一批微破裂持续时间达到2s以上,之前的三批微破裂持续时间均少于1.5 s。每批微破裂均由一组密集的微破裂组成,单次微破裂持续时间一般不超过50毫秒。

1.2.2 压裂过程数据记录与简析

下面依时间顺序分别选取10个有代表性的时间段所记录的频谱特征进行讨论,由于技术原因,目前所用传感器的精度还不足以区分破裂发生时接收信号的准确时间,我们将在以后的工作中逐步解决这个问题。

(1)0.291~31.826s受压开始后的噪声谱(图4):刚开始施压不久,虽然各传感器接收的噪声有所差异,但是总体来说噪声主要频率集中于50~300Hz 低频区和400~750Hz的高频区,4号传感器由于处于距离油泵较远的位置,因此振幅相对于其他三个来说略低,并且频率分布于20~200Hz和600~750Hz 两个更低和更高的区域,不同传感器所记录的噪声差异主要与它们不同的位置有关。

(2)31.990~33.526s噪声谱(图5):相对于0.291~31.826s受压开始后的噪声谱来说噪声的振幅增大了近一倍,但是频率仍然以集中于低频区为特征,高频幅度相对低频区有所压制,这说明岩样内部结构受压力影响有所变化,噪声振幅的突然增大有可能是因为油泵不均匀施压的结果。

图4 0.291~31.826s受压开始后的噪声谱

图5 31.990~33.526s噪声谱

(3)300.665~302.201 s噪声谱(图6):临近微破裂发生前,噪声水平进一步降低,尤其是2号、1号和4号传感器位置降低明显。3号位置噪声水平相对较大。

图6 300.665~302.201s噪声谱

(4)302.290~303.826s微破裂发生时的频谱(图7):这是岩样发生首批微破裂时的频谱特征。从中可以明显的看出振幅异常,不同的传感器得到的数据有所差别:1、2号传感器的频率范围大约集中在700~800Hz,3、4号传感器,尤其是3号受到噪声的影响比较大,对微破裂的反应不是很明显。3号传感器的频率范围大约在500~600Hz之间,4号的频率范围大约在650~750Hz之间。首批微破裂只是改变了岩样内部的细微结构,宏观上没有发生什么变化。

图7 302.290~303.826s微破裂发生时的频谱

(5)305.599~307.135s微破裂发生时的频谱(图8):相对于302.290~303.826s微破裂时的频谱明显具有向低频方向移动的特征,频率范围大约集中在650~750Hz之间。

图8 305.599~307.135s微破裂发生时的频谱

(6)307.612~309.147s噪声谱(图9):微破裂之后继续加压岩样暂时不会再次发生破裂,和开始时的噪声谱特征基本相同,但高频噪声相对高于低频噪声,表示岩样内部结构已发生变化。

图9 307.612~309.147s噪声谱

(7)316.793~318.329s微破裂发生时的频谱(图10):第三批微破裂相对于前两批破裂强度大,振幅增强,随着压力的增大,在前面破裂产生的基础上,当岩样内部裂缝再次发育、贯通,岩样就会发生破裂。各个不同的传感器在频谱特征上差别较大,频率范围各不相同,其中1号传感器记录到微破裂的频率范围大约在350~500Hz之间,2号传感器记录到的频率范围大约在450~550Hz之间,3号传感器记录到的频率范围大约在400~500Hz之间,4号传感器记录到的频率范围大约在650~750Hz之间。

图10 316.793~318.329s微破裂发生时的频谱

(8)326.534~328.070s噪声谱(图11):第三批微破裂发生之后,由于岩样已经产生了裂缝,继续加压在很短的时间内对岩样将不会产生大的影响,因此表现出来的仍然是压机噪声的频谱特征。

图11 326.534~328.070s噪声谱

(9)358.723~360.258s主破裂发生时的频谱(图12):继续加压之后,岩样在前面微破裂的基础上发生更强的破裂,即主破裂。从我们所采集到的数据来看,这次破裂幅度比前面破裂要大得多,并且峰值具有明显向低频区移动的趋势。各传感器的频率范围也具有明显的差异:1号传感器的频率范围在300~500Hz之间,2号传感器的频率范围在200~300Hz之间,3号传感器的频率范围在350~550Hz之间,4号传感器的频率范围在500~700Hz之间。因为最终的破裂面位于2号和3号传感器之间,并且最后的破裂向2号传感器方向伸展,所以2号和3号传感器记录的微破裂振幅相对较低,并且频率也偏低,尤其是2号传感器。而相对远离破裂面的1号和4号传感器位置记录的微地震幅度和频率都相对要高许多。这可能与岩样较小,离破裂面越远传感器的位移越大有关。

图12 358.723~360.258s主破裂发生时的频谱

(10)361.335~362.871 s主破裂发生后的噪声谱(图13):主破裂发生之后施加的压力对岩样已经不能产生任何作用,由于岩样已经完全破裂,并且这时我们在岩样的外观上已经可以清楚的看到一条裂缝,继续加压,这条裂缝就起到了卸压的作用,因此继续施加压力,我们采集到的只是压机所发出的噪声的频谱。但相对刚开始施压时的噪声谱而言,由于岩样已发生破裂,油泵噪声通过岩样传递给传感器,裂缝对噪声的传递产生了影响,导致高频噪声大大减弱,而低频噪声则相对增强。

图13 361.335~362.871s主破裂发生后的噪声谱

1.2.3 微破裂频谱变化特征

分析压机对岩样进行加压的实验过程,通过频谱的变化特征可以看出:四批微破裂产生时频谱的频率范围以及振幅有所差异(见表1)。

表1 四批微破裂发生时不同传感器接收的频率范围及频谱峰值

四批破裂发生时,频率范围并不仅仅集中在表1所列的范围之内,另外还有相对集中的区域,但是由于其他区域的频率或者峰值较低,或者范围很窄,因此没有一一列举,表中只列举了主要的频率范围。由表中数据可以看出,对于一个传感器来说,随着压力的增大,四次破裂发生时的频率范围依次减小,即频率随着破裂的增大逐渐降低;对于同一次微破裂来说,前两批微破裂产生时距离压力作用点近的两个传感器得到的数据相对于较远的传感器来说要小,而主破裂发生时只有4号传感器的频率范围明显大于其他3个,说明距离裂缝越近,频率值越低。从这个现象我们可以总结以下规律:随着压力的增大,频率值降低;裂缝越大,频率值越小。而且,由于岩样本身体积比较小,在放置的时候由于位置不足够精确,因此一点儿的差距都会导致岩样在受压过程中发生轻微倾斜,这种轻微倾斜将导致处于对称位置的1、4号检波器和2、3号检波器的数据存在较大差异。从每次破裂频谱的峰值来看,前两次破裂发生时靠近压力作用点的传感器发出的频谱的峰值要大,而后两次破裂发生时情况正好相反。这有可能是由于最先两次破裂发生时微破裂的规模很小,只是内部结构发生了微小变化,而后两次发生时微破裂的规模相对增大,第四批微破裂甚至使岩样在宏观上发生了破裂的缘故。

1.3 实验结果讨论

近年来,地震学者认识到,地震是一次具有裂隙的地球材料的破裂行为,并在一般的固体材料,其中包括岩石微裂隙形成过程的研究中,去探索这种破裂的孕育及发生。现今关于地震孕育的一切基本假想,都把地球裂隙破裂的演化看成是寻找和解决地震前兆并解决地震预报的关键[2-10]。主破裂的发生是由于岩样在前面破裂以及不断施压的条件下,使得内部裂缝不断聚集增多,最后达到相互贯通的结果,岩样在宏观上产生了一条与压力方向近似平行的裂缝。下面分别从四批微破裂中挑选主要的一次微破裂的数据记录进行详细讨论:

(1)第一批微破裂中主要破裂产生的微地震记录(图14):图中分别反映了4个传感器发出的信号。第一批微破裂是当花岗岩样的耐压强度首先达到极限,内部累积了足够的裂隙并且在主压应力方向首先贯通,从而发生了破裂。

图14 第一批微破裂中主要破裂产生的微地震记录

(2)第二批微破裂中主破裂发生时产生的微地震记录(图15):第二批微破裂是在第一批微破裂的基础上发育的,破裂的频率主要集中在低频区。并且红色和黄色的频谱的频率要高于黑色和蓝色频谱的频率,从而可以看出靠近裂缝放置的传感器频率较低。即越靠近震源频率越低。

图15 第二批微破裂中主破裂发生时产生的微地震记录

(3)第三批微破裂中主破裂产生的微地震记录(图16):第三批微破裂是由于继续施加压力岩样内部裂缝继续发育,强度相比较第二批而言要强得多,频率范围也具有向低频区转移的趋势,这可以看作是地震发生前比较重要的一次微破裂。

图16 第三批微破裂中主破裂产生的微地震记录

(4)第四批微破裂中主破裂产生的微地震记录(图17):第四批微破裂是岩样受压的主破裂,也是最终发生的破裂,这次破裂是由于随着压力的不断增大(最终压力达到10.4 kN),岩样内部裂隙不断发育,并高度集中贯通,从而导致岩样宏观上的裂缝产生,集中的应力完全释放。如果将此应用于地震预测,这时的裂缝产生就可以定义为地震的发生。并且距离震源近的传感器得到的频谱的频率较低。

图17 第四批微破裂中主破裂产生的微地震记录

岩体内大多存在着节理、劈理等裂隙,有的还存在着断裂等较大型的薄弱结构。在压力增大到一定程度之后,这些裂隙就会集中发生产生破裂。花岗岩的破裂模式可以归纳为雪崩式不稳定裂隙形成模式,该模式也叫苏联科学院大地物理研究所模式。这个模式的基础是两个现象:裂隙应力场的相互作用和裂隙形成作用的局部集中。在缓慢变化载荷的长期作用下,任何材料,包括岩石,在破坏前都必将产生这两种现象。关于长期强度的学说是基于下列事实:在“亚临界”(小于材料的瞬时强度)应力的缓慢作用下,裂隙的数目和大小逐渐发展。当裂隙密度达到一个临界密度状态值后,材料就过渡到快速宏观破裂阶段。如果裂隙在介质中的分布从统计角度看是均匀的,那么在缓慢增强的载荷作用下,或在活跃介质的影响下,裂隙的数目和大小将逐渐增大,而其中排列的较有利的一些裂隙将互相贯通,形成较大的裂隙。如果把格里菲斯理论及由此引申出来的一些理论用于地震震源,认为在雪崩式裂隙形成过程中逐渐产生一些少量的长裂隙,这些长裂隙串通汇合就导致了岩石的宏观破裂(地震)[11]

2 在煤矿瓦斯灾害预测中的应用

煤炭开采诱发地震(采矿业称为冲击地压)是采矿诱发的动力地质灾害之一。矿震是在采矿活动和区域应力场作用影响下,使采区及周围应力处于不稳定状态,采区局部积累的一定能量以冲击或重力方式释放而产生的岩体振动。据不完全统计,20世纪80年代以来东北地区的辽宁北票、吉林辽源、黑龙江鹤岗、双鸭山汉鸟西、七台河等煤矿的矿山地震水平逐渐增强,部分矿震造成的损失相当严重。引起各级地震、煤炭系统和研究人员的关注。矿震的发生除入为开采因素外,矿山所处构造环境和区域构造应力场状况与其有密切关系[12]

煤炭开采使得井下应力分布随开采深度加大变化加剧,在区域构造活动的共同影响下,构造应力使新、老构造作不同程度的继承性和新生性活动。一些井下断裂构造从稳定状态逐渐活动或蠕动,被牵动产生局部活化,是矿震发生的内在动力环境[13]

地震是由于地下岩体受到应力作用产生形变,在岩体中引起破裂、相对位移、滑动、产生断层并辐射地震波。矿震发生地点是矿区的地下岩体振动,地震记录许多地方与天然地震记录相似。矿震的震源深度浅,在较大范围内可近似为表面震源的随机波动。

在区域构造作用力下,煤层气会沿一些特定方向产出和聚集。当生成的煤层气在矿井局部地区溢出并积聚时,倘若矿井局部温度达到煤层气燃点,就可能引起爆炸。煤矿瓦斯爆炸与地震活动在时间上具有同步性[14-15]。因此准确预测地震活动的发生对预防煤矿瓦斯爆炸具有重要的作用。

基于上述实验得出的结论,以及地震活动与煤矿瓦斯爆炸的关系,可以将MEMS1221 L型单分量加速度传感器用来预测由于入为采矿及天然地震引发的矿震及裂缝。从而减少由于煤矿瓦斯爆炸带来的灾害。

我们将传感器分别放置在煤矿的不同位置,并同时将传感器连接到计算机观测分析系统上来记录不同时刻传感器发出的信号,根据我们上述实验的过程,在不断的采矿过程中,机器对矿体会产生较大的作用力,当矿体内部岩石结构发生变化时,传感器就会发生明显的变化,我们看到记录的频谱信号就会发生突变。产生两三次这样的突变之后,矿体就极有可能有坍塌的可能,因此,在第一次突变时,我们就应该加强防范,采取相应的措施来阻止破裂的发生。

同样,当地下发生地震时我们也可以根据这个原理进行预防,绝大多数地震学家认为,在地震发生前有一个应力在震源区集中的过程,称作孕震过程或地震准备过程。当这一过程发展到一定阶段时,孕震区内的岩石可能会出现微破裂或塑性化等现象,从而导致地震波的频谱发生变化。此外,孕震区内小震震源动力学参数的变化也可能引起地震波频谱的某些变化。这些就是根据地震波频谱异常来进行预报研究的物理依据。在主破裂发生之前往往发生一系列的振幅较小、频率偏低的地震波,这些地震波的产生我们可以将它们视为前驱地震波。本次实验中主破裂发生之前的三次微破裂产生的地震波就可以看作是前驱地震波。这些地震波的发生是主地震波的能量的积蓄,当能量积累到一定程度势必发生地震。

3 结论

(1)花岗岩在单轴压力的作用下产生相对集中的四批脆性破裂,并且这四批破裂的强度具有随着压力的增大逐渐增强的趋势;微破裂发生时,频率具有向低频区偏移的趋势,并且裂缝越大频率越低;

(2)主破裂发生之前的三批微破裂是岩样内部裂缝逐渐集中并相互贯通的结果,可以看作是地震发生前的前兆。主破裂的发生在宏观上产生裂缝,这时可以看作地震的发生;

(3)压裂实验的近源观测记录表明,MEMS技术应用于监测裂缝具有很高的灵敏度,因此将该技术应用于煤矿灾害的预测将会取得好的效果,从而减少由于入为采矿及天然地震引发的矿难。

致谢:感谢东营感微科技开发公司提供的技术支持,以及中国石油大学(华东)机电学院实验室提供的压机设备。在论文的完成过程中,得到了师兄弟的帮助,在此一并表示感谢。

参考文献

[1]Claerbout,J.F..1968.Synthesis of a layered medium from its acoustic transmission response:Geophysics,33,264~269

[2]Daneshvar,M.R.,Clay,C.S.,and Savage,M.K..1995.Passive seismic imaging using micro earthquakes,Geophysics,60,1178~1186

[3]M.Reza Daneshvar,Passive seismic imaging using microearthquakes,Geophysics,60(4)

[4]Deyan Draganov.2004.Passive seismic imaging in the presence of white noise sources,The leading edge,September

[5]张山,刘清林,赵群等.2002.微地震监测技术在油田开发中的应用,石油物探,41(2),226~231

[6]Andy Jupe等著,田增福译.1999.微地震监测:对油藏的听与看,石油物探译丛,5,17~20

[7]刘建中,王春耘等.2004.用微地震法监测油田生产动态,石油勘探与开发,31(2),71~73

[8]Andy Jupe等著,李彦兰译.1999.微地震监控储层,天然气勘探与开发,44~48

[9]Jupe A.,Cowles J.,Jones R..1998.Microseismic monitoring:listen and see the reservoir,World Oil,219(12):171~174

[10]董世泰,高红霞.2004.微地震监测技术及其在油田开发中的应用,石油仪器,18(5),5~8

[11]冯德益,陈化然,丁伟国.1994.大震前地震波频谱异常特征的研究,地震研究,17(4),319~329

[12]张凤鸣,余中元,许晓艳等.2005.鹤岗煤矿开采诱发地震研究,自然灾害学报,14(1),139~143

[13]郑文涛,汪涌,王璐.2004.煤矿瓦斯灾害中地震活动因素探讨,中国地质灾害预防治学报,15(4),54~59

[14]杨建成.1996.王家山煤矿地裂缝的形成及其灾害,甘肃地质学报,5(2),91~95

[15]张刚艳,张华兴,岳国柱.2003.煤层开采裂缝的观测与分析,岩土力学,24(增刊),414~417

③ 我现在山东理工大学采矿工程专业,想跨专业跨学校报中国石油大学(华东)考研,报考石油工程专业行吗

还是很靠谱的,我认识有山科学矿机的考的油气井工程(石油工程下面的方向),目前在上海海洋石油局,收入不错!

④ 中国石油大学的知名校友有哪些

1953年建校以来,走出了何国钟、沙国河、汪燮卿、杨启业、王德民、郑颖人、王铁冠、袁士义等十多位两院院士。

党政领导人

吴仪:原中共中央政治局委员国务院副总理、卫生部长。北京石油学院炼油62届。

俞泽猷:原全国政协常委、民盟中央副主席、社会服务部部长。1952-1957年在清华和北京石油学院就读。北京石油学院人造石油57届。

王彦:原政协委员、中央委员,中国海油总经理。北京石油学院钻井58届。

朱家甄:原劳动部副部长。北京石油学院经济63届。

张轰:原中国石油副总经理、大庆市委书记。北京石油学院矿机63届。

杨兴富:原全国总工会副主席。北京石油学院炼制系63届。

尹克升:原青海省委书记。北京石油学院开采64届。

蒋金楚:原中国石油副总经理、国家经贸委局长。北京石油学院工业经济系65届。

李毅中:原工业和信息化部部长。北京石油学院炼油66届。

⑤ 2022山东枣庄矿业集团技术学院招生专业有哪些

2022山东枣庄矿业集团技术学院基本信息

2022山东枣庄矿业集团技术学院招生专业

2022山东枣庄矿业集团技术学院学校简介

山东枣庄矿业集团技术学院是“三校一体”的综合职业教育院校,这里同时也是枣矿集团职业中专、山东科技大学继续教育学院枣庄分院。学院始建于1958年,最初名称为山东煤矿枣庄技工学校,1995年以来先后晋升为部级重点技校、国家级重点技校、国家级重点中专,2005年列为级“金蓝领”技师培训试点单位,2006年初经山东劳动和社会保障厅批准筹建技术学院,形成了集高技与中技、大专与中专、职工培训与技能鉴定为一体的多层次办学格局,是山东职业教育先进单位。在校生规模4000余人,培养的学生多次在全技能大赛中获奖。

现有物理、化学、电工、电子、液压、力学、通风、地质、金工等10个实验室,钳工、电工、矿机、矿电、金工、铆焊等6个实习、实训车间和近30个校外实习基地,开设综合机械化采煤、综合机械化掘进、电钳、机械维修、电气维修、选煤、焦化、发电、机械安装、电气安装、地质测量、矿井通风与安全、铆焊、计算机应用、数控机床、矿井提升、电工电子、矿井建设、建筑施工、学前教育、酒店服务与管理等20余个专业.

⑥ 总体就实力和发展来说,安徽理工大学和兰州理工大学哪个更好

总体就实力和发展来说,安徽理工大学更好。下面是详细介绍:

1、学科建设:

截止2019年2月,安徽理工大学拥有6个博士后科研流动站,6个一级学科博士点,30个二级学科博士点;21个一级学科硕士点,110个二级学科硕士点,9个专业学位硕士点。拥有8个省级重点学科,获批2个省学科建设重大项目。

在第四轮全国学科评估中,7个学科榜上有名,其中6个学科位列省属高校第一。学校形成了以工科为主体,以地矿、爆破等学科为特色,工、理、医、管、文、经、法、艺协调发展的办学体系。

截至2020年4月,兰州理工大学有9个学科门类,有20个省级重点学科、4个国防特色学科方向。有5个博士后科研流动站、6个一级学科博士点、24个一级学科硕士点,14个硕士专业学位类别。

2、院系专业:

截至2019年12月,安徽理工大学设有研究生院和17个学院(部),开办78个本科专业。

截至2020年4月,兰州理工大学设有19个学院、1个教学研究部,设有研究生院、温州研究生分院;有69个本科专业。


3、师资力量:

截止至2019年12月,安徽理工大学拥有一支专兼职结合、结构合理的高水平师资队伍。教职工近2000人,专任教师1300余人,教授、副教授600余人,专任教师中具有博士、硕士学位的1100余人。

截至2020年4月,兰州理工大学有教职工2309人,专任教师1478人,其中教授297人、副教授683人、博士生导师155人、硕士生导师649人、博士学位628人。

4、学校发展:

安徽理工大学是安徽省和应急管理部共建高校,安徽省高等教育振兴计划“地方特色高水平大学”建设高校,安徽省高峰学科建设计划特别支持高校,国家“中西部高校基础能力建设工程”支持高校。

入选教育部“卓越工程师教育培养计划”实施高校、中国人民解放军后备军官培养选拔基地、全国首批深化创新创业教育改革示范高校、首批国家级新工科研究与实践项目、国家创新人才培养示范基地。

兰州理工大学是甘肃省人民政府、教育部、国家国防科技工业局共建高校,入选国家“中西部高校基础能力建设工程”、教育部“卓越工程师计划”、新工科研究与实践项目、国家大学生创新性实验计划。

是国家国防教育特色学校、全国毕业生就业典型经验高校、中国政府奖学金来华留学生接收院校、中国人民解放军后备军官选拔培养基地、“一带一路”高校战略联盟、CDIO工程教育联盟成员单位。

⑦ 专访TDC创始人娄胜利:未来交通的建设者

5.24-5.25日,IFIC全球金融科技创新峰会在海南三亚隆重召开。本次峰会由三亚市人民政府指导,人民日报数字传播、FINWEX等主办,六维量子、ANTTOKEN联合主办。

交通+区块链项目TDC创始人娄胜利受邀出席,并参与主题为“未来可预见的区块链行业变化”的圆桌论坛,在回答主持人提出的目前中美贸易战可能对行业带来的影响做了精彩发言。

他认为经济和技术的发展都在一定程度上符合波浪理论,中美贸易战既是我们这一代的挑战,也是另一种幸运——因为我们又站在了历史发展的制高点。在这种背景下,推动各类技术服务、赋能于实体经济,才能迎来快速发展。

会后,娄胜利先生接受了IFIC现场采访,分享了TDC 交通大数据推动未来交通落地的建设者角色。

1. 刚才的圆桌会议上您提到在开始TDC这个项目之前是在山东高速集团工作,负责整个山东高速的养护维修。您能再详细跟我们分享一下您的专业背景和行业经历么?

我是2000年步入大学,本科学的交通工程,对物流管理也有所涉猎。大学那会儿一直是学生班主任,需要负责学生专业的引导,当学生的导师。所以在和他们谈专业的时候,要先建立自己的专业信息。因为在2000年以前,以及2000到2010年这十来年,整个高速公路建设如火如荼,我们就会反过来想,那么高速公路建完了,甚么专业最吃香,那肯定是围绕着高速公路所建立起来的安全和信息化所针对的方向,所以说基建会逐渐进入夕阳产业,然后又上了软件工程的研究生,针对交通安全的信息化来进行行业的瞭解。

毕业之后到山东高速集团工作,负责高速建设、运营和养护工作,在山东高速工作了12年。11年时开始担任山东高速驻京办主任,当时和交通部的部委们接触比较多;同时还担任公路绿色、智能养护技术协同创新平台副秘书长,这个平台是中交一公院发起的,和超过20个省省份的交通厅和公路运营单位合作,负责给省属交通厅做创新的项目。2016年正式辞职创业,开始做公路信息化这类的项目。现在TDC这个项目,把物流、交通安全、计算机信息都融合在了一块,也算是我个人资源的一个最大化运用吧。

2. 根据您刚才的一个分享,我们大概瞭解到TDC这个项目是交通+区块链的模式。结合您的专业背景,又是甚么契机让您进入到区块链行业呢?

从小的层面说,我经历过车祸,这使得我对道路环境造成的交通安全问题深有体会。从那之后我一直在关注这个领域。如果说我出门我就能知道,未来的路况是甚么样的,哪里有危险,对面会过来一个甚么样的车,这些信息能掌握在我手里,我就可以很好的去控制风险。

从大的层面说,目前社会上,交通行业是资本非常关注的一个行业,今天也有很多嘉宾在讲无人驾驶,在讲未来交通。经过这么多年,公路行业在大量国家基础设施的投资下,我们的路网基本形成。现在交通行业的主要矛盾也在发生变化,由原来的走不了、走不快、货物运不出,转变到现在怎样走得好、走得安全、货物运得畅通。对于公路来说,如此大的路网都形成了,怎样才能用更好的手段来解决我们交通行业走得好、走得安全、货物运畅的矛盾?实际上,交通是由人、车、路、环境四个因素组成的,作为目前的社会技术的发展来说,我们的车已经很智能了,而且我们的人也很聪明。但如果路满足不了交通需求,保证不了通行安全的话,那么交通也无从谈起。

TDC这个项目所做的就是站在路上,站在公路运营方的角度来看,怎么样让路变得聪明起来?为甚么这么说?因为目前我们的路它是既聋又哑的,首先他是个聋子,甚么的车要经过我这条路,我不知道。它还是一个哑巴。路况问题比如说她路上有坑,桥要塌了,路上结冰了,路上有易撒物这些问题路本身知道,但是它说不出来。

而解决这些问题的一大挑战就是庞大的数据采集量和采集工作量,在对区块链技术初步瞭解之后,我们发现区块链这种方式,从技术层面,能利用分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式,有效解决数据安全和共享的问题;从经济层面,能建立交通安全数据采集和应用的生态体系,链接B端和C端的数据交互,奖励机制促进了数据采集、转换和应用,提高全民采集共享交通安全数据的积极性,刚好可以快速简便的帮助我们采集交通实时大数据、交通状态,把数据服务于我们这个行业,解决现在交通行业的主要矛盾。

3. 好的感谢娄总,您刚才提到TDC旨在解决现在交通行业的主要矛盾,您可以跟我们分享一下TDC这个项目具体是怎么运行来解决这些矛盾的呢?

好的。TDC项目核心是采集实时交通数据并反馈,实现车路协同。

第一个点是通过分布式计算这项技术来提高交通数据采集的效率,降低数据采集的成本。我们目前正在推进行车数据采集仪器的研发,这个仪器核心是人工智能芯片,通过卷积神经网络算法识别多种类别的交通数据,经过数据清洗后,可用数据上传需求带宽要求将大幅降低。

第二个点是分布式存储,上传后的数据按照调用频率,存储在不同服务器中,降低大数据量对服务器硬盘的压力。同时根据实时数据类型进行加密,分为链上ID,分布式加密存储来对TDC进行赋能。

第三个点是经济激励,整体而言,交通数据体量庞大,利用率低下,更别说实时数据应用了。传统交通数据需求方获取数据耗时长,投入大;以高德为例,他比网络要多采集车,但是它最快是三个月才能采集一遍道路的清路实景数据。而道路通行方,例如客货运输相关企业,在TDC项目经济模型中通过上传有效行车数据能获得相应奖励, 降低自身出行成本,提高出行的安全性和便捷性。对交通数据需求方而言,数据来源将不仅限于自身数据采集设施,这样一来降低了采集成本,提高了采集效率。

4. 听起来TDC这个项目落地场景已经非常明确了。在您看来,这个项目能推进的信心从何而来呢?

目前的话,我们交通数据研究合作成员单位包括交通运输部大数据中心、路网监测中心、山东大学、山东财经大学、东南大学;项目核心团队由山东大学教授、博导包方勋教授指导,多名经验丰富、高水平的视频算法工程师、交通工程专家组成;我们是华为1+N智慧交通生态合作伙伴,针对这个项目,双方进行了深度的合作。技术层面,我们和地平线这家优秀的国产芯片公司正在合作,目前正在利用大量数据训练TDC的人工智能芯片,预计TDC初代数据采集“矿机”能顺利在9月面世。

5. 瞭解,那您对TDC这个项目,乃至整个交通行业的未来有甚么样的展望可以分享一下么?

目前,中国已经是全球最大的汽车产销国,中国的高速公路里程数在全球排第一,而中国高速公路的效率却并不是很高,中国在基础设施的投资上跑在了世界的前沿。所以我们考虑的是车和路未来之间的关系应该是怎么样的,仅仅是路归路、车归车?还是可以把路和车通过某种技术连接起来,让车与路处于同一个系统当中、更加融合,从而让车的驾驶能够更安全,路的通行更有效率?

甚么是车路协同?车路协同是基于无线通信、传感探测等技术进行车路信息获取,并通过车车、车路信息交互和共享,实现车辆和基础设施之间智能协同与配合,达到优化利用系统资源、提高道路交通安全、缓解交通拥堵的目标。车路协同的技术内涵有三点,一是强调人-车-路系统协同,二是强调区域大规模联网联控,三是强调利用多模式交通网络与信息交互。这项技术是信息技术与汽车和交通两大行业相融合的结果,TDC将践行未来交通建设者角色,通过实时交通大数据持续为交通行业发展贡献一份力量。整个交通运输行业在不久的将来智能化程度必将在多方共同努力下得到极大的提升。

后记:随着更多区块链技术在日常生活场景中落地,整个区块链行业将迎来更为良性的发展。浪潮退去,深耕行业的人们,绝不会裸泳。

阅读全文

与山东矿机大学相关的资料

热点内容
中国区块链政策2019年 浏览:740
ipfs合营矿机 浏览:749
哈希顿挖矿 浏览:561
以太坊怎么骗局 浏览:361
狗狗币要并入以太坊吗 浏览:366
以太坊怎么当矿工 浏览:526
深圳星网储区块链有限公司怎样 浏览:793
挖矿要8g显存 浏览:366
比特币产生的原理图 浏览:882
莱特币作者 浏览:83
挖矿比特币区块链 浏览:319
比特币1枚多少钱 浏览:896
数字货币交易所吃客损 浏览:475
耐普矿机是哪年上市的 浏览:324
以太坊钱包空降币 浏览:213
eco数字货币是什么意思 浏览:893
魔兽怀旧服中级挖矿去哪里挖 浏览:415
鸿博股份区块链 浏览:742
aot慈善币1月19日矿机 浏览:973
现在哪个比特币网可以交易 浏览:18